NUMBER CONVERSION


NUMBER CONVERSION


Decimal to Binary: At first we need to divide the given decimal number by two and remind the retain. The step as below.



Ex: if the given number is (146)10, then
156/2 = 78 and retain = 0
78/2   = 39 and retain = 0
39/2   = 18 and retain = 1
19/2   = 9   and retain = 1
9/2     = 4 and retain   = 1
4/2     = 2 and retain   = 0
2/2     = 1 and retain   = 0
So, the Binary Number is (10011100)2



Octal to Binary:
Octal to Binary


  • At first separate the octal number if it is more than one digit.
              Ex:     7    6     3    1
  • Find the binary number for each digit of octal number. Add “0” to the left if binary number is shorter than 3 bits.
              Ex:      7              6           3         1
                        111       110      011      001
  • Writ the all groups binary number together, maintaining the same group order provides the binary for given octal number.
Ex: 111110011001

Result: (7631)8 = (111110011001)2
Hexadecimal to Binary: If the given number is more than one digit, then
          Ex: (3AB2)16
  • Separate the Hexadecimal number individual
          Ex:     3         A           B           2
  • Write Binary number for each digit of hexadecimal number.
Ex:
Hexadecimal to Binary

  • So the result is (3AB2)16 = (11101010110010)2

Binary to Decimal:
If the given number is (101011)2, then
=1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20
= 32 + 0 + 8 + 0 + 2 + 1
=42
So the result is (42)10
Octal to Decimal:
If the given number is (5011)8, then
=5 x 83 + 0 x 82 + 1 x 11 + 1 x 20
= 2560 + 0 + 1 + 1
= 2562
So the result is (2562)10

Hexadecimal to Decimal:
If the given number is (1E1C12)2, then
=1 x 165 + E x 164 + 1 x 163 + C x 162 + 1 x 161 + 2 x 160
= 1048576 + 15 x 65536 + 4096 + 12 x 256 + 16 + 32
= 2038832
So the result is (2038832)10

No comments