Integration


INTEGRATION


Introduction: 

Integration is a tool of mathematics to measure area under curve. It is the easiest reverse formula of Differentiation. Integration comes before differentiation. In early 5th century when the area was calculated with the imagination of polygons. Leibniz is the introducer of integration though many says it’s the theory given by Isaac Newton.

Symbol:

The symbol of Integration is ∫. The symbol ∫dx, called the differential of the variable of x. ∫ is taken from a letter which means the summa or sum or total. This means an integral is a sum of area of infinitesimally small rectangle under the curve, length – f(x) & width –dx, being considered for integration over the variable x.

Fourier is the first person who known to use the limits on top and bottom of the integral symbol to mark the start and end point of integration.
Types: There are two types of integrations. They are

  • Definite integration
  • Indefinite integration
Definite integration (Definite integral calculus):

The integral symbol with a & b as the marked limit basically represents area under the curve f(x) between these two values of the x. This form of integral is known as the Definite Integral & is the more applied form of Integration.

Properties of Definite integration:

Definite integral represents the real world application of integration. Here are few important properties of definite integration.

Indefinite integration
Indefinite Integration (Indefinite Integral Calculus):

When there are no limits on integral symbol the result of integration is known as Indefinite integral and is a generalized result of the area under the curve f(x) for the variable x, where it is continuous.
Properties of Indefinite integration: Here are some important formula in indefinite integration.
Definite integration

Integration formulas:

The integration of function f(x) is given F(x) and is represented as

∫f(x) dx = F (x) + C
Where, the Right hand side of the equation means integral of f(x) with respect to x.
F(x) = is called the anti-derivative or primitive.
f(x)  = is called the integrand
dx    = is called the integrating agent
C     = is an arbitrary constant is known as the constant of integration
x      = is the variable of integration


No comments